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Abstract

The electromagnetic backscattering of a crosscut of a cruise missile coated by a thin ho-
mogeneous layer made of radar absorbent material is modeled using a finite element method.
Based on the radar cross section and a reflection coefficient, optimization problems are for-
mulated for evaders and interrogators leading to optimal material parameters for the coating
and optimal monostatic radar operating frequencies, respectively. Optimal coating materials
are constructed for several radar frequencies. Tuning only dielectric permittivity gives a
narrow frequency range of high absorption while also tuning magnetic permeability widens
it significantly. However the coating layers considered cannot provide substantial reduction
of backscattering in the entire frequency range from 0.2 to 1.6 GHz. The computational
experiments also demonstrate that the reflection coefficient based on a planar geometry can
predict well the strength of radar cross section in the sector of interest.
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1 Introduction

In this paper we consider the determination of interrogating frequencies to maximize electromag-
netic backscatter from objects with radar absorbent material (RAM) coatings. Particularly we
are interested in radar cross sections (RCS) of missile like objects using monostatic radars. This
is an important class of problems, since the backscattering from missiles is rather faint compared
to ones from airplanes. Thus, a RAM coating on a missile might make it very difficult to detect
and the proper choice of interrogation frequency can be crucial for effective interrogation. We
present a general mathematical formulation for optimizing the frequencies for detection. It is
derived under the assumption that the evader also minimizes the backscattering by choosing op-
timal permittivity and permeability for the coating material. The formulation can be simplified
substantially when the material parameters for the coating are known.

∗Email: htbanks@ncsu.edu, kito@ncsu.edu, jatoivan@ncsu.edu.
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The scientific literature has considered earlier the shape and material optimization for the
evader. For example, the papers [9, 12, 22, 23] consider multidisciplinary shape optimization
problems for an airfoil where the aim is to minimize the electromagnetic backscattering together
with aerodynamical constraints and maximization. In [11, 17] an optimization for the shape and
material parameters for the coating layer is performed to minimize the RCS in a sector when
the shape of outer boundary of the airfoil is fixed. The paper [8] considers the optimization of
the material parameters of a coating layer.

In this paper we choose our model geometry to be a crosscut of a cruise missile [13] which
is coated with a thin homogeneous layer of radar absorbent material. We construct a finite
element model for the transverse magnetic polarization in the frequency range from 0.2 GHz
to 1.6 GHz. We use linear finite elements on triangulation which is locally fitted to the inter-
faces and refined in the coating layer in order to provide sufficient accuracy. Furthermore, the
computational domain is truncated to be a rectangular domain and a second-order absorbing
boundary condition [1, 18] is imposed on the artificial boundary. A more detailed description
of the finite element method and the solution of the resulting large linear systems is given in
[19]. One of our interests is to study the use of the reflection coefficient based on a plane wave
analysis to predict the strength of the backscattering in the considered frequency range.

The outline of the paper is as follows. We begin by defining the geometry of the model cruise
missile in Section 2. This section contains also the description of the finite element model and
the formula for the reflection coefficient. In Section 3, we consider optimization problems for
evaders and interrogators. These are discussed in the context of two player zero sum minmax
games in Section 4. We report the results of numerical experiments in Section 5. Our conclusions
and some suggestions for further investigations are given in the last section.

2 Model problem

We study the electromagnetic scattering by a perfectly conducting cruise missile coated by a
radar absorbent material (RAM) layer of constant thickness. In this investigation we compute
the scattering of a crosscut of a missile in two-dimensions. The interrogating electromagnetic
incident wave is assumed to be a transverse magnetic. We simplify the geometry by neglecting
fins. We remark that this simplification generally reduces the backscattering and, thus, if we can
detect a missile without fins then we can certainly detect the same missile with fins. We model
the exhaust nozzle as a cavity with perfectly conducting walls. The dimensions and approximate
geometry of the missile are taken from [13]. The length of the missile is 6.25 meters and its
diameter is 0.52 meters. The leading edge is modeled as a half sphere. The exhaust cavity is
0.5 meters long and its diameter is 0.255 meters. The geometry is shown in Figure 1.

Figure 1: The crosscut of the cruise missile and the computational domain.

2



The missile is illuminated by a monostatic radar operating in the frequency range from 0.2
GHz to 1.6 GHz. This means that the wavelength varies in the range from 0.1875 meters to 1.5
meters. Furthermore, the missile is from 4.16 to 33.33 wavelengths long. The interrogating plane
wave is such that the angle between the propagation direction of the wave and the centerline of
the missile is from 0◦ to 30◦.

The thickness of a homogeneous RAM layer is chosen to be 2.5 millimeters. This thickness
is denoted by d in the following. The relative material permittivity εr and permeability µr are
constants in the coating.

2.1 Finite element model

Let the crosscut plane be the x1x2-plane. Due to the transverse magnetic polarization of the
electromagnetic field the electric field has the form (0, 0, E)T where the function E is constant
in the x3-direction. In this case Maxwell’s equation for a time-harmonic electric field E reduces
to a Helmholtz equation. Let us denote the missile by Ω and its coating layer by Ω1. For a
finite element model the exterior domain is truncated to be the rectangle Π = [−1.0, 6.75] ×
[−1.0, 1.0] where the leading edge of the missile is at (−0.25, 0.0). Here the units are meters.
We approximate the Silver-Müller radiation condition by a second-order absorbing boundary
condition [1] on ∂Π; see also [18, 20]. We split the field E into an incident field E(i) and a
scattered field E(s). Thus, we have E = E(i) + E(s). Then the scattered field E(s) satisfies the
Helmholtz equation

∇ ·
(

1

µ
∇E(s)

)

+ εω2E(s) = −∇ ·
(

1

µ
∇E(i)

)

− εω2E(i) in Π \ Ω̄

E(s) = −E(i) on ∂Ω

[

1

µ

∂E

∂n

]

= [E] = 0 on ∂Ω1 \ ∂Ω

∂E(s)

∂n
− ikE(s) − i

2k

∂2E(s)

∂s2
= 0 on ∂Π

∂E(s)

∂s
− ik

3

2
E(s) = 0 at C,

(1)

where n and s denote the normal and tangential directions of the boundary ∂Π, respectively,
and C is the set of the corner points of Π. Furthermore, [ · ] denotes the jump. The incident
field in air is given by

E(i) = eik(x1 cos α+x2 sin α),

where α is the incident angle and k = 2πf/c = ω/c is the interrogation wave number corre-
sponding to the interrogating frequency f .

A standard variational formulation for (1) is given in [8]. We perform a finite element
discretization using linear finite elements. The mesh step size in air is one centimeter and in
the coating layer it is one 16th of a centimeter. The refinement of the mesh is carried out in a
conforming manner. Magnified views of the mesh near the leading edge and the upper trailing
edge are shown in Figure 2. The mesh consists of 276761 nodes and 529212 triangles. We use a
preconditioned iterative GMRES method [19] based a domain decomposition method for solving
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the resulting large systems of linear equations. Our approximation for the far field pattern F is
described in [18].

Figure 2: Magnified views of the mesh in the rectangles [−0.28, −0.24] × [−0.02, 0.02] and
[5.98, 6.02] × [0.11, 0.15]. The coating layer is painted with gray.

2.2 Reflection coefficient model

The finite element model gives a good but computationally expensive way to study backscatter-
ing. A computationally more affordable model is obtained by computing the reflection coefficient
for a coated half plane. For this let us consider a perfectly conducting half plane which has a
coating layer of thickness d with the relative permittivity εr and the relative permeability µr.
Let a normally incident electromagnetic wave with the frequency f impinge the half plane. Then
the corresponding wavelength λ in air is λ = c/f , where the speed of light is c = 0.3× 109. The
reflection coefficient R for the wave (see [8, 21]) is given by

R =
a + b

1 + ab
, (2)

where

a =
εr −

√
εrµr

εr +
√

εrµr
and b = e4iπ

√
εrµrfd/c. (3)

3 Optimization problems for interrogators and evaders

3.1 The strength of backscatter

We denote the strength of electromagnetic backscattering at the interrogating frequency f with
the coating material parameters εr and µr by B(εr, µr, f). We describe several possible choices
for B below. We denote a generic measure over frequencies for the strength of backscattering by
J(εr, µr, P, B) for a coated target with the material parameters εr and µr. One natural choice
for J is

J2(εr, µr, P, B) =

∫

I
(B(εr, µr, f))2dP (f), (4)
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where I is a set of frequencies and P is a probability measure on I. When P is the constant
(1/ meas I) this reduces to

J2(εr, µr, P, B) =
1

meas I

∫

I
(B(εr, µr, f))2df. (5)

Another measure J which gives the maximum strength of backscattering is

J∞(εr, µr, P, B) = max
f∈supp P

B(εr, µr, f), (6)

where supp P denotes the support of P .
The far field pattern of the scattered field (see [8, 14]) describes the strength of backscattering.

We denote the far field pattern of the scattered field to the direction α+180◦ by Fα(α+180◦; f)
when the incident angle is α. With a monostatic radar this is the far field pattern of interest.
It can be defined (see [8]) as

Fα(α + 180◦; f) = lim
r→∞

(√
8πkr e−i(kr+π/4) E(s)(r cos(α + 180◦), r sin(α + 180◦); f)

)

, (7)

where k = 2πf/c is the interrogation wave number and E(s) is the scattered electromagnetic
field. The usual way to illustrate the amplitude of the far field pattern is to plot the radar cross
section defined by

RCS(α; f) = 10 log10

(

1

8π
|Fα(α + 180◦; f)|2

)

.

Now one possible definition for the measure of the strength of backscattering at the frequency
f is

BF (εr, µr, f) =

∫

A
|Fα(α + 180◦; f)|2dQ(α), (8)

where A is a set of incidence angles and Q is a probability measure on A.
An alternative, computationally much cheaper measure of the strength of backscattering is

BR(εr, µr, f) = |R(εr, µr, f)|, (9)

where R is the reflection coefficient defined in (2).
In the discussions and computations reported on below, we will test the use of and compare

findings for each of the measures BF of (8) and BR of (9). As we shall see, calculations with
BR are much faster than those with BF and are just as accurate for predictions unless the
discretization level in the finite element calculations for E(s) are rather fine.

3.2 Determining optimal frequencies for interrogation and an optimal coating

material for evading

The goal of the interrogator is to find a probability measure P on I in (4) or (6) which maximizes
the strength J of the electromagnetic backscattering. There are technological limits on the
possible interrogation frequencies and, therefore, the probability measures P should belong to a
set of feasible probability measures on I which we denote by P. For example, often a discrete
set of frequencies is used for radar interrogation. Thus, in this case P can be a combination
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of Dirac delta measures δfj
for given frequencies {fj}. In any event, P is to be found as the

solution of the optimization problem

max
P∈P

J(εr, µr, P, B). (10)

A difficulty with the optimization problem (10) is that the material parameters εr and µr

are not usually known. We know that the pair (εr, µr) must belong to a set of feasible material
parameters denoted by M. In particular, all (εr, µr) ∈ M should satisfy Re εr ≥ 1, Im εr ≥ 0,
Re µr ≥ 1, and Im µr ≥ 0. Furthermore, there are also upper limits on the real and imaginary
parts of εr and µr which depend on available coating materials.

A smart evader tries to minimize the backscattering while the interrogator tries to maximize
it. This leads to the problem

min
(εr,µr)∈M

max
P∈P

J(εr, µr, P, B). (11)

From a computational point of view, the problem (11) is very expensive to solve if BF based
on the finite element model is used. It is computationally preferable to use BR based on the
reflection coefficient. Therefore, an important question is how well BR predicts the behavior of
BF .

A more tractable problem for the evader is to assume that the interrogating radar uses some
frequency interval which we denote by ID. Actually there can be several frequency intervals,
but for simplicity we consider here only one interval. Furthermore, it is natural in some cases
for the evader to simply assume a uniform probability measure P over ID. With (6) measuring
the maximum backscattering, this leads to the minimization or design problem for the evader
(given the set ID)

min
(εr ,µr)∈M

max
f∈ID

B(εr, µr, f). (12)

We denote the solution of this problem by ε∗r and µ∗
r .

On the other hand, if the interrogator assumes that the evader has previously performed the
minimization (12), then he or she should perform the maximization in (10) at (εr, µr) = (ε∗r , µ

∗
r).

4 Some theoretical considerations

The problems formulated in the previous section are special cases of classical static zero–sum
two player games [10] where the evader controls the (εr, µr) in M and the interrogator controls
the interrogating frequencies f ∈ I or P ∈ P(I). In such games one defines upper and lower
values for the game by

J = inf
(εr,µr)∈M

sup
P∈P

J(εr, µr, P, B)

and
J = sup

P∈P

inf
(εr,µr)∈M

J(εr, µr, P, B).

The first represents a security level for the evader while the latter is a security level for the
interrogator. It is readily argued that J ≤ J and if the equality J ∗ = J = J holds, then J∗ is
called the value of the (static) zero–sum game. Moreover, if there exist (ε∗r , µ

∗
r) ∈ M and P∗ ∈ P

such that
J∗ = J(ε∗r , µ

∗
r , P

∗) = min
(εr,µr)∈M

J(εr, µr, P
∗) = max

P∈P
J(ε∗r , µ

∗
r , P ),
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then ((ε∗r , µ
∗
r), P

∗) is a saddle point solution of the game. To investigate theoretical issues in
such a context for our problems, one would proceed in a typical fashion by establishing certain
regularity and compactness properties. First, one would establish continuity of the mapping on
M× I defined by (εr, µr, f) → B(εr, µr, f). For the function B = BR of (9) this continuity is
readily obvious. For BF of (8) one first argues continuity for each α ∈ A of f → Fα(α+180◦; f)
for the far field given by (7). But this reduces to arguing continuity of the solution E (s) = E(s)(f)
of the Helmhotz equation (1) which depends on α and f through the incident wave

E(i)(f, α) = exp {i(2πf/c)(x1 cos α + x2 sin α)}

and boundary parameters (see (1) and recall k = 2πf/c). Since (f, α) → E(i)(f, α) is clearly
continuous, the arguments reduce to standard continuous dependence arguments for parameters
in an elliptic partial differential equation which we do not pursue here.

Once one establishes the required continuity in f , one then turns to topologies on M × P
and some type of compactness. The obvious topology for M is the usual Euclidean one, in
which typical sets M (see (13) below) are readily compact. For P(I) a natural choice is the
Prohorov metric topology as used for minimization/inverse problems in [2, 3, 7]. Prohorov metric
convergence is weak∗ convergence in P when it is considered as a subset of the topological dual
C∗

B(I) of the space CB(I) of bounded continuous functions on I . That is, Pk → P in the
Prohorov metric if and only if

∫

I
φ(ν)dPk(ν) →

∫

I
φ(ν)dP (ν)

for all φ ∈ CB(I), i.e., all bounded continuous φ on I. It is known [2, 3] that if I is a complete
metric space, then P taken with the Prohorov metric is a complete metric space. Moreover, if I
is compact, then so is P . Using these properties and arguments similar to those in [2, 4, 5, 6, 7],
one can develop well-posedness and approximation results for the minmax problems defined
in this paper. We defer pursuit of such a theory to another effort and concentrate here on
computational findings

5 Numerical results

5.1 Frequencies around 1.0 GHz

We begin by optimizing the material parameters for given frequency intervals ID around 1.0
GHz which we shall refer to as evader’s design frequency intervals. For these minimizations we
use each the reflection coefficient based BR and the far field pattern based BF , respectively,
as B in (12) with a given ID. For the finite element based optimization the incident angles in
(8) belong to the sector A = [0, 30]◦ with the constant weight 1/30 for all directions (i.e., Q is
chosen as the uniform distribution on [0, 30]).

Using a given pair (εmax
r , µmax

r ) we define the set M of feasible material parameters in (12)
to be

M = {(εr, µr) | 1 ≤ Re εr ≤ Re εmax
r , 0 ≤ Im εr ≤ Im εmax

r ,

1 ≤ Re µr ≤ Re µmax
r , 0 ≤ Im µr ≤ Im µmax

r }.
(13)

In Table 1 we report the results of these optimizations. In the optimizations of the materials
denoted by 1R, 2R, 1F, and 2F the design frequency interval ID is just the single frequency
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1.0 GHz, i.e., ID = {1}, while for the material 3R and 3F the interval is ID = [0.8, 1.25]
GHz. For the materials 1R and 1F , only the relative permittivity εr is optimized, since the
relative permeability µr is fixed at 1 + 0i. For all optimizations given in Table 1, we have
used εmax

r = 2000 + 400i. In order to simplify notation, we denote maxf∈ID
BR(ε∗r , µ

∗
r , f) and

maxf∈ID
BF (ε∗r , µ

∗
r , f) by max BD

R and max BD
F , respectively, in the table.

The optimizations based on the reflection coefficient are performed by computing the values
of B̃R(εr, µr) = maxf∈ID

BR(εr, µr, f) on a grid over the feasible material parameters M and
then choosing the point with the smallest value. For the optimizations of BF based on the finite
element model we use a quasi-Newton method with the BFGS update for the approximation
of the Hessian [15] with forward finite difference approximations for gradients. As the initial
guesses we used the corresponding optimal material parameters computed using BR. On the
boundaries of the feasible domain M we projected the search direction to be feasible. The
integral in (8) is approximated using the trapezoidal quadrature rule with one degree steps. We
compute the maximum of B over ID by taking the maximum of the value of B at the end points
of ID. For the coating layers and frequency ranges considered here, this gives the correct value
for maximizing over all of ID.

One evaluation of BF requires about 10 minutes on a PC with Intel Xeon 3.4 GHz CPU
and one optimization run takes a few days depending on the convergence of the quasi-Newton
method. The use of the finite element model in the optimization is several orders of magnitude
more time consuming than the use of the reflection coefficient R. For example, the optimization
for the material 1R based on R using the grid step size 0.1 for M requires about one minute.

material ID µmax
r ε∗r µ∗

r max BD
R max BD

F

no {1} 1 + 0i 1 + 0i 1.00 × 10−0 6.83 × 10+1

1R {1} 1 + 0i 900.4 + 38.2i 1 + 0i 1.03 × 10−4 1.94 × 10−0

2R {1} 10 + 2i 90.7 + 21.4i 10 + 2i 4.26 × 10−5 1.01 × 10−2

3R [0.8, 1.25] 10 + 2i 91.64 + 37.08i 10 + 2i 4.02 × 10−1 1.35 × 10+1

1F {1} 1 + 0i 887.7 + 39.5i 1 + 0i 1.62 × 10−1 3.87 × 10−2

2F {1} 10 + 2i 90.89 + 22.0i 10 + 2i 7.84 × 10−3 5.78 × 10−3

3F [0.8, 1.25] 10 + 2i 85.93 + 36.12i 10 + 2i 4.38 × 10−1 1.05 × 10+1

Table 1: Optimized coating materials 1R, 2R, 3R using the reflection coefficient R and 1F, 2F,
3F using the far field pattern F compared to the no coating case.

Once we completed the calculations reported on in Table 1, we used the optimal values (ε∗r , µ
∗
r)

to consider B∗
R(f) = BR(ε∗r , µ

∗
r , f) as the interrogating frequency changes over the interval

[.2, 1.6]. In Figure 3 we plot the modulus of this reflection coefficient B∗
R(f) versus the frequency

for the optimized materials 1R, 2R, and 3R in Table 1. Similarly, Figure 5 depicts B∗
F (f) =

BF (ε∗r , µ
∗
r , f) of (8) for the same materials. In order to make the comparison easier we have also

plotted the ratio between B∗
F for the coated missiles and BF (1, 1, f) for the non coated missile

in Figure 4. We remark that in both figures the strength of the backscatter is plotted on a
log scale so that the reduction of R from 1 to 0.1 represents a 10 decibel reduction, reduction
to 0.01 represents a 20 decibel reduction, etc. The behavior the curves are similar in Figures
3 and 4. The B∗

R based reflection coefficient predicts stronger backscattering than does that
based on the far field pattern B∗

F . Based on Figure 4 for the material 1R the reduction in the
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backscattering is about 10 decibels for interrogating frequencies within ±2% of 1.0 GHz. For
the material 2R the reduction is about 10 and 20 decibels for interrogating frequencies within
±15% and ±5%, respectively, of 1.0 GHz. Thus, the ability to optimize also the permeability
µr widens significantly the frequency range of effective reduction of backscattering.

If the evader has only optimized the relative permittivity εr for ID = {1.0} GHz then the
interrogator only needs to use frequencies, say, more than 10% off from 1.0 GHz to obtain strong
backscattering from the missile. The interrogator must vary the radar frequency from 1.0 GHz
significantly more when the evader has tuned both permittivity and permeability of the coating
material. Thus, a dual frequency radar using, for example, interrogating frequencies 0.4 and 1.4
GHz should be able to detect missiles with any of the optimized coating layers for ID = {1.0}
GHz.

In order to see more clearly the behavior of B∗
F near the minima the curves for the materials

1R and 2R are shown in Figure 6 with an enlarged scale. We have also plotted B∗
F for the

materials 1F and 2F in this figure. The minimum for the material 1R is reached about 0.7%
below 1.0 GHz. A question arises is this due to the finite element discretization error or for
some reason. To answer this we refined the finite element mesh by halving mesh step size and
then we again computed the values of B∗

F for the material 1R. The resulting curve is also shown
in Figure 6. For this refined computation the minimum is about 0.2% below 1.0 GHz. This
convergence with refinement toward 1.0 GHz suggests that the perceived difference is mainly due
to the finite element discretization error. Hence, for these particular backscattering problems
the plane wave analysis gives a very accurate prediction of the frequency range leading to the
minimal backscattering.

0.001

0.01

0.1

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

1R
2R
3R

Figure 3: The strength of backscatter B∗
R as a function of the interrogating frequency f based

on the reflection coefficient R for different coating layers.
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0.001

0.01

0.1

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

1R
2R
3R

Figure 4: The relative strength of backscatter BF (ε∗r , µ
∗
r , f)/BF (1, 1, f) as a function of the

interrogating frequency f for different coating layers.

0.01

0.1

1

10

100

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

1R
2R
3R
no

Figure 5: The strength of backscatter B∗
F as a function of the interrogating frequency f based

on the far field pattern F for different coating layers.
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0.01

0.1

1

10

0.99 0.995 1 1.005 1.01

1R
2R
1F
2F

finer mesh, 1R

Figure 6: A magnified plot of B∗
F as a function of the interrogating frequency f for different

coating layers.

We have depicted scattered electric fields E(s) with the angle of incidence 15◦ for the non
coated missile and the missile with the 2F coating in Figures 7 and 8, respectively. While
the coated missile still produces strong scattering, the backscattering to the radar seems to be
minute. This situation is changed when the interrogating frequency is moved further from the
design frequency (i.e., ID = {1}) or when the radar is behind the coated missile. The scattered
fields for two such cases are shown in Figure 9 for interrogating frequency f = 0.6 GHz. and
in Figure 10 with the incident angle 165◦. To further understand the scattering calculations,
we have plotted the radar cross sections for the missiles with the coating layers made of the
materials 1R, 2R, 1F, and 2F as well as for the non coated missile in Figures 11 and 12. We
remark that in the design we used BF which is based on the incident angles between 0◦ and 30◦

(i.e., (8) with A = [0, 30] and Q the uniform distribution on this support region) while the RCS
captures reflections in all directions. The plots show very clearly that the material 1F reduces
the RCS in the sector of interest tens of decibels more effectively than the material 1R. As we
already concluded earlier, this is probably due to some extent to the finite element discretization
error.

11



Figure 7: The backscattering without coating layer when the interrogating frequency is f = 1.0
GHz and the incident angle is α = 15◦.

Figure 8: The backscattering with a coating layer made of the material 2F when the interrogating
frequency is f = 1.0 GHz and the incident angle is α = 15◦.

Figure 9: The backscattering with a coating layer made of the material 2F when the interrogating
frequency is f = 0.6 GHz and the incident angle is α = 15◦.

Figure 10: The backscattering with a coating layer made of the material 2F when the interro-
gating frequency is f = 1.0 GHz and the incident angle is α = 165◦.
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Figure 11: The radar cross sections at 1.0 GHz for no coating, 1R, 2R (left) and no coating, 1F,
2F (right) (lines: solid, dotted, dashed, respectively).
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Figure 12: The radar cross sections at 0.6 GHz (left) and 0.9 GHz (right) for no coating, 1F and
2F materials (lines: solid, dotted and dashed, respectively).
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5.2 Frequencies around 0.4 GHz

In this section we report on results when we optimize the material parameters for evader’s design
frequencies ID around 0.4 GHz using the reflection coefficient based BR. For lower frequencies
like 0.4 GHz one might expect the plane analysis to yield slightly less accurate predictions,
since less detail is clearly imaged with decreasing frequency and increasing wavelength. For
these optimizations the set M of feasible material parameters is given by (13) with εmax

r =
10000 + 2000i. The results are reported in Table 2. We remark that the slightly higher value
of maxBD

R for the material 5R than for the material 4R is due to the rounding of the material
parameters.

material ID µmax
r ε∗r µ∗

r max BD
R max BD

F

no {0.4} 1 + 0i 1 + 0i 1.00 × 10−0 2.95 × 10+1

4R {0.4} 1 + 0i 5625.4 + 95.5i 1 + 0i 5.13 × 10−5 4.03 × 10−0

5R {0.4} 10 + 2i 558.6 + 29.3i 10 + 1.2i 8.84 × 10−5 1.43 × 10−2

6R [0.32, 0.5] 10 + 2i 549.3 + 150.0i 10 + 2i 6.69 × 10−1 1.65 × 10+1

Table 2: Optimized coating materials 4R, 5R, 6R using the reflection coefficient R compared to
no coating results.

In Figure 13 we graph the values of B∗
R(f) = BR(ε∗r , µ

∗
r , f) as a function of the interrogating

frequency f for the missiles coated with the materials 4R, 5R, and 6R defined in Table 2. For the
same missiles the values of B∗

F are plotted in Figure 15. In order to facilitate comparison of B∗
R

and B∗
F we also again plot the ratio of B∗

F for the coated missiles to BF (1, 1, f) for the non coated
missile in Figure 14. Again the modulus of the reflection coefficient R has similar behavior but
slightly larger values than the relative value BF (ε∗r , µ

∗
r , f)/BF (1, 1, f). One noticeable difference

is the slight shift of the location of the secondary reduction of reflection around f = 1.2 GHz.
We presume this to be due to the finite element discretization error.

From Figure 14 we see that for the material 4R the reduction in the backscattering is about 10
decibels for interrogating frequencies within ±1% of 0.4 GHz. For the material 5R the reduction
is about 10 and 20 decibels for interrogating frequencies within ±6% and ±2%, respectively, of
0.4 GHz. The interrogator only needs to change the interrogating frequency about 10% from
0.4 GHz to render ineffective the coating layer of evader’s missile made of the material 4R or
5R. Thus, we find that the frequency range of high absorption is narrower for the materials
optimized for ID = {0.4} GHz than for those optimized with ID = {1.0} GHz. Again a dual
frequency radar using, for example, interrogating frequencies of 0.4 and 1.4 GHz should be able
to detect missiles with any of the optimized coating layers with ID = {0.4} GHz even though
one of the operating frequencies was used to design the coating.

Figure 16 depicts the RCS for the non coated missile and the missiles with the coating
layer made of the materials 4R and 5R. The use of the material 5R obtained by optimizing
both permittivity and permeability leads to approximately 30 dB reduction in the sector of
interest [0, 30]◦. The use of the permittivity εr optimized material 4R leads to only about 10
dB reduction in the considered sector. The frequency range of high absorption is narrow for the
material 4R. Finite element discretization error is probably shifting the location of maximum
absorption about 1% (similar to the behavior of the curve for the material 1R in Figure 6).
Thus, the modest reduction in the RCS is probably due to this.

14



0.001

0.01

0.1

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

4R
5R
6R

Figure 13: The strength of backscatter B∗
R as a function of interrogating frequency f for different

coating layers.
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Figure 14: The normalized strength of backscatter BF (ε∗r , µ
∗
r , f)/BF (1, 1, f) as a function of the

interrogating frequency f for different coating layers.
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Figure 15: The strength of backscatter B∗
F as a function of interrogating frequency f for different

coating layers.
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Figure 16: The radar cross sections at 0.4 GHz for no coating, 4R, 5R (line: solid, dotted,
dashed, respectively).

16



5.3 Permittivity optimizations using a simplified geometry

In this section we consider the optimization of the relative permittivity εr with the fixed relative
permeability µr = 1 using a simplified geometry for the cruise missile. More precisely, we
replace the cavity modeling the exhaust nozzle by a plane which is also coated. The simplified
geometry is shown in Figure 17. The values of BF in the angle range [0, 30]◦ for all interrogating
frequencies in the range [0.2, 1.6] GHz differ from those for the original geometry in Figure 1
and those for the simplified one in Figure 17 without a coating layer by less than 0.2%. Thus,
the curves corresponding to the non coated missiles in Figures 5 and 19 below are essentially
the same. We conclude that at least with a non coated missile it is not essential to model the
exhaust nozzle when the incident angles are in the range [0, 30]◦.

Figure 17: The simplified geometry modeling the cruise missile and the corresponding compu-
tational domain.

In the following we choose evader’s design frequencies ID to be either {0.8}, {1.2}, or {1.6}
GHz and the evader performs the optimization using the reflection coefficient based BR resulting
in values of ε∗r = 1407 + 48i, 625 + 32i, or 352 + 24i, respectively. These optimal relative
permittivities at the design frequencies are given in Table 3 along with the values of BF (εr, 1, f)
based on the far field pattern F for the interrogating frequencies f = 0.2, 0.4, . . . , 1.6 GHz.
Figure 19 depicts the values of B∗

F in this interrogating frequency range from 0.2 GHz to 1.6
GHz. For a comparison we have also plotted the corresponding B∗

R in Figure 18. Again the
reflection coefficient R gives a good prediction for the behavior of B∗

F .

εr\f 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

1 15.9 29.5 42.7 56.0 68.3 82.8 94.6 108.7

1407 + 48i 15.9 29.4 41.9 2.4 67.7 83.0 94.7 108.8

625 + 32i 15.9 29.4 42.5 55.2 62.8 1.6 86.2 106.0

352 + 24i 15.9 29.5 42.6 55.7 67.1 78.6 74.4 1.4

Table 3: The strength of backscatter BF (εr, 1, f) based on the far field pattern F for various
coating materials and frequencies.

Scattered electromagnetic fields for various frequencies are shown in Figures 20, 21, 23, 24,
26, 27, 28, 30, 31, and 33 when the incident angle α is 15◦. The corresponding radar cross
sections are shown in Figures 22, 25, 29, 32, 34. For the coated missiles we have also depicted
the radar cross sections when the frequency is 0.1 GHz below the design frequency. These
plots demonstrate clearly that even a 0.1 GHz change in frequency makes the coating layers
ineffective when only the relative permittivity is tuned to maximize the absorption at the design
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Figure 18: The strength of backscatter B∗
R as a function of the interrogating frequency f based

on the reflection coefficient R for different coating layers.
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Figure 19: The strength of backscatter B∗
F as a function of the interrogating frequency f based

on the far field pattern F for different coating layers.

frequencies. Thus, one can conclude that for the coating layers considered here, a practical
solution for the interrogator is to employ an interrogating frequency about 10% from the design
frequency for the evader coating. An alternative approach for the interrogator is to use a dual
frequency radar.
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Figure 20: No coating, interrogating frequency f = 0.2 GHz, and α = 15◦.

Figure 21: No coating, interrogating frequency f = 0.4 GHz, and α = 15◦.
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Figure 22: RCS at interrogating frequencies f = 0.2 GHz (left) and f = 0.4 GHz (right) for no
coating.
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Figure 23: No coating, interrogating frequency f = 0.8 GHz, and α = 15◦.

Figure 24: Coating with ε∗r = 1407 + 48i, interrogating frequency f = 0.8 GHz and α = 15◦.
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Figure 25: RCS at interrogating frequencies f = 0.7 GHz (left) and f = 0.8 GHz (right) for
coating with ε∗r = 1407 + 48i (solid line) and no coating (dotted line).
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Figure 26: No coating, interrogating frequency f = 1.2 GHz, and α = 15◦.

Figure 27: Coating with ε∗r = 625 + 32i, interrogating frequency f = 1.2 GHz and α = 15◦.

Figure 28: Coating with ε∗r = 625 + 32i, interrogating frequency f = 1.1 GHz and α = 15◦.
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Figure 29: RCS at interrogating frequencies f = 1.1 GHz (left) and f = 1.2 GHz (right) for
coating with ε∗r = 625 + 32i (solid line) and no coating (dotted line).

Figure 30: No coating, interrogating frequency f = 1.6 GHz, and α = 15◦.

Figure 31: Coating with ε∗r = 352 + 24i, interrogating frequency f = 1.6 GHz and α = 15◦.
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Figure 32: RCS at interrogating frequencies f = 1.5 GHz (left) and f = 1.6 GHz (right) for
coating with ε∗r = 352 + 24i (solid line) and no coating (dotted line).

From Figure 19 it can be seen that B∗
F (f) attains its minimum value about from 0.5% to 1%

below the design frequency. This is again probably due to the finite element discretization error.
As the last experiment we minimized BF instead of BR with respect to the relative permittivity
εr for evader’s design frequency ID = {1.6} GHz. The optimal value is approximately ε∗r =
346.759 + 24.692i and the associated value of BD

F is about 0.096. Thus, the strength of the
backscattering is over 10 decibels smaller than for εr = 352 + 24i. In Figure 33 we show the
scattered field for the optimized coating layer. The corresponding radar cross sections are plotted
in Figure 34.

Figure 33: Coating with ε∗r = 346.759107 + 24.6916716i, interrogating frequency f = 1.6 GHz
and α = 15◦.
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Figure 34: RCS at interrogating frequency f = 1.6 GHz for coating with ε∗r = 346.759107 +
24.6916716i (solid line), ε∗r = 352 + 24i (dotted line), and no coating (dashed line).

6 Conclusions

We have considered the electromagnetic backscattering by the crosscut of a perfectly conducting
cruise missile which is coated by a homogeneous electromagnetic absorbent material coating of
constant thickness. If the evader uses only the relative permittivity εr of the coating material to
reduce the backscattering, then the interrogator can render the coating ineffective by changing
the interrogating frequency of the radar by, say, 10 % from evader’s design frequency. The evader
can make the range of high absorbent frequencies wider by tuning both relative permittivity and
magnetic permeability of the coating material. Even with such a coating layer it is not possible to
substantially reduce the radar cross section for both high and low frequencies at the same time.
Thus, the interrogator should be able to detect the cruise missile by using a dual frequency radar,
operating for example at interrogating frequencies f = 0.4 and f = 1.4 GHz for the coatings
in our calculations. For more complex coating layers, say, employing nonlinear materials and
multilayering, this conclusion might not be valid.

We also make a useful observation that the reflection coefficient based on a planar geometry
gives a fairly accurate and easily computable upper limit for the backscattering for the consid-
ered scattering problems. Hence, the interrogator can use the reflection coefficient to quickly
and easily determine effective radar operating frequencies once there is sufficient information on
the evader’s coating layer. The finite element model provides a more reliable but also computa-
tionally much more expensive way to analyze the backscattering. Due to the discretization error
our finite element model with more than a quarter million unknowns appears to lead to up to
1% error in the frequency minimizing the backscattering. We were able to reduce this error by
refining the discretization, but then the computational cost with the refined model is already
too high for optimizations in a modern PC.
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In further studies one could consider more complicated coating layers and three-dimensional
geometries. For example, the coating material could be nonlinear leading to the permittivity
and permeability properties being frequency dependent. The cruise missile we investigated is
a body of revolution (BOR) and, thus, for example, the method proposed in [16] could be
used to compute the three-dimensional electromagnetic backscattering. Including fins in the
model would lead to a general three-dimensional problem which would require a computational
methodology such as the finite elements methods considered in [24].
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